

MICROMET3D — STAZIONI METEOROLOGICHE COMPATTE PER MONITORAGGI AMBIENTALI IN DISCARICHE PER RIFIUTI URBANI (Rev.3 280121)

Le stazioni della serie **MicroMet** sono state progettate per il monitoraggio ambientale delle discariche in conformità alle linee guida **WMO** (World Meteorological Organization – Annex 8) e al **D.Lgs.36/2003** (decreto attuativo per la gestione delle discariche) e al **D.Lgs. 152/06** (norme in materia ambientale).

Le stazioni impiegano tutta strumentazione professionale Geoves che può essere calibrata presso laboratori esterni (es. **Accredia**). I sistemi MicroMet possono essere configurati con le seguenti tipologie di misure:

- Meteorologiche: temperatura e umidità dell'aria, precipitazione atmosferica, velocità e direzione vento, evaporazione (calcolata mediante un piranometro che permette di ricavare la misura attraverso il metodo FAO-WMO di Penman Monteith <u>evitando</u> <u>l'uso di costosi evaporimetri a vasca che richiedono una</u> <u>continua manutenzione</u>)
- Idrologiche: freatimetri per la misura di livello idrometrico delle falde, sonde multiparametriche per la misura dei principali parametri chimico fisici delle acque macrodescrittori di inquinamenti in falda
- Atmosferiche: tipicamente vengono monitorate sostanze gassose (bio-gas) e odorigene quali CH4, CO2, O2, H2, H2S, NO2, SO2, NH3, mercaptani e composti volatili (VOC) in base alla composizione dei rifiuti.

Il datalogger, che costituisce il nucleo della stazione di monitoraggio, è in grado di visualizzare, acquisire, memorizzare e trasmettere i dati a distanza. Grazie alla sua modularità il datalogger può ricevere fino a 16 misure analogiche e 2 digitali oltre alla capacità di integrare sonde multiparametriche con uscita seriale per il monitoraggio delle acque.

Vantaggi

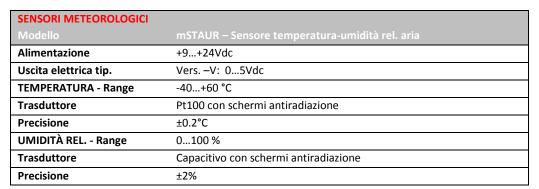
Stazione monitoraggio acque sotterranee in discarica

- Strumentazione conforme WMO e certificabile Accredia
- ✓ Basso consumo e possibilità di alimentazione da pannellino solare
- ✓ Nessun protocollo di comunicazione proprietario
- ✓ Dati in formato **testo standard** (CSV format) compatibile con Excel, database e con i più comuni software disponibili in commercio.
- Nessun onere di allacciamento (con trasmissione wireless GPRS e alimentaz. da pannellino fotovoltaico)
- Condizioni operative estreme (presenza di salinità, ghiaccio sabbia, agenti corrosivi, escursioni termiche elevate, ecc...)
- √ Affidabilità nel tempo e minima manutenzione richiesta
- ✓ Elevata precisione e risoluzione di misura
- Tecnologia completamente italiana

Geoves constantly improving our products. Therefore, this specification may be changed without notice. All rights reserved so the disclosure of this document is prohibited

GE®VES

Dati tecnici


Dati tecnici					
DATALOGGER	mMET3 – Dataloggers di acquisizione dati				
Canali I/O	8 ingressi analogici (+8 opzionali su scheda di espansione EXPA8): in				
	tensione o in corrente (tip. 05Vdc o 420mA); 2 ingressi digitali: 1				
	frequenzimetro (per sensori con uscita impulsiva fino a 50KHz es.				
	anemometri, misuratori di portata, ecc), 1 conta impulsi/conta tempo				
	(per sensori con uscita in bassa frequenza (pluviometri) o con uscita				
	contatempo es. eliofanometri, bagnatura fogliare, contatto pulito); 1				
	ingresso diagnostico per monitor tensione batteria				
Alimentazione	1014.4Vdc (tipica 12Vdc); Regolatore interno di carica batteria da				
	pannello fotovoltaico con monitor (disattivazione del carico <10,5Vdc,				
	ri-attivazione >12Vdc) oppure alimentatore da rete 220Vac/12Vdc				
Autonomia media di	• >15gg: con batteria 12Vdc/7Ah, pann. fotov.20W, memorizz.: 5' trasmiss.: 60'				
funzionamento di una	• >30gg: con batteria 12Vdc/18Ah, pann. fotov.30W, memorizz.: 5' trasmiss.:				
stazione meteo a 7 p.	60'				
Trasmissione dati	wireless GSM/GPRS via FTP;				
	<u>via cavo</u> RS232/LAN con software PC x scarico dati				
Trasmissione allarmi	via e-mail da software web MeteoGraph (con trasmissione via GPRS)				
Programmazione	In locale: tramite software Geodesk				
Parametri configurabili	Data e ora con sincronizzazione NTP (network time protocol)				
	Costanti anemometro e pluviometro				
	Cadenza di memorizzazione (a scelta tra 5-10-15-30-60')				
	Cadenza di trasmissione (a scelta tra 5-10-15-30-60')				
Elaborazione dati	Min, Max, media aritmetica, media trigonometrica, deviazione standard,				
	turbolenza; sommatoria; dato diagnostico della tensione di batteria. Misure				
	calcolabili (se presenti i sensori meteo che consentono il calcolo): TD Temp. di				
	dew point, Evapotraspirazione EtO, , TWB temperatura di bulbo umido				
Memorizzazione	500 giorni di backup dati con memorizzazione circolare				
Conformità	Annex 8 – WMO (World Meteorological Organization)				
Temperatura operativa	-30+70°C				
Box IP65 (modello base)	In materiale plastico Dim.(LxHxP): 250x350x160mm, coperchio con				
	chiusura a chiave e staffe universali per il fissaggio a palo.				

mMET3

Montaggio nel quadro IP65 per esterni

Modello	mPA, BAR – Barometri da interni o con presa statica da esterni
Range (tipico)	8001100 hPa (su richiesta 6001100 hPa per siti oltre 1000mslm)
Trasduttore	Piezoresistivo
Accuratezza media @ 25°C	BAR: ±0.5hPa; mPA: ±0.6hPa
Stabilità a lungo termine	±0.01hPa / anno

Modello	PIRSC – Sensore radiazione solare globale			
Range di misura	02000 W/m ²			
Trasduttore	a cella al silicio			
Incertezza giornaliera attesa	±3,5%			
Tempo di risposta	<1s			

Modello	mWS1 – Sensore velocità vento		
Range di misura	075 m/s		
Trasduttore	Magnetico con segnale sinusoidale AC non alimentato		
Meccanica di rotazione	Su cuscinetto in bagno d'olio		
Uscita elettrica tip. Vers. –N: Onda sinusoidale AC			
Costante strumentale	4.3 Hz/m/s (tipica)		
Precisione	±0.1m/s		

Modello	mWD1 – Sensore direzione vento			
Range di misura	0359° (angolo elettrico effettivo 0352° ±4°)			
Trasduttore	Potenziometro lineare 360° continui			
Meccanica di rotazione	anica di rotazione Su cuscinetti in bagno d'olio			
Uscita elettrica tip.	Vers. –N: Variazione di resistenza 10KOhm nominali			
Precisione	±2°			

Modello	RG200, RG400 - Pluviometro (disponibile anche con riscaldatore			
	antighiaccio)			
Range di misura	infinito			
Orifizio	200cm ² (o 400cm ²)			
Trasduttore e uscita	A bascula a doppio contatto n.o.			
Precisione	Class B UNI 11452:2012 (class A con connessione a datalogger Geoves)			
Risoluzione	0.2 mm/commutazione (o 0.1mm per versione da 400cm²)			
Alimentazione	Senza riscaldatore: Nessuna; Con riscaldatore VersR: 12-24Vdc 60W			

SENSORI IDROLOGICI					
SONDA ULTIPARAMETRICA Mod. SMx-485					
Misure rilevabili	Range	Range		Risoluzione	
 Temperatura 	: -5+5	5 °C		0,01 °C	
2. Redox:	± 1100) mV		0,1 mV	
3. pH:	014	рН		0,001 pH	
4. Conducibilità	06.0	00 μS autorange; 060).000 µS	1 μS	
5. Livello:	0201	n; 0350m (vers.GS-6ľ	MP)	0,001 m	
6. Ossigeno disc	ciolto: 020	ppm o mg/l		0,001 ppm o mg/l	
7a. Torbidità (op	zione): 04.0	00 NTU		0,1NTU	
oppure					
7b. n.1 Parametr	o chimico a				
scelta (opzic	one) tra: Ammo	Ammoniaca, Cloruri, Nitrati.			
Pressione di esercizio 30bar con sensori di Livello, Temperatura, Conducibilità, pH, Rec		ucibilità, pH, Redox,			
	Ossige	Ossigeno disciolto e torbidità			
Alimentazione e c	consumi 12Vdc	12Vdc 30mA max			
Interfacciamento	Seriale	Seriale RS485 (opzione convertitore RS232) o protocollo MODBUS			
Cavo	Autop	Autoportante 30m con tubicino compensazione pressione atmosf.			
Materiale	PVC				
Dimensioni	ø70m	m x 510mm, Peso: 2kg			
	Opzio	Opzione: ø42mm con max 5 parametri: pH, T, Cond., Rx, Livello			

FREATIMETRO	Mod. SLP			
Range di misura	010m (altri range disponibili su richiesta)			
Trasduttore	piezometrico			
Precisione	<0.5% f.s.			
Uscite elettriche disponibili	420mA			
Alimentazione	1224Vdc			

SENSORI PER LA MISURA DEI BIOGAS			
Modello e Misura		Range	Risoluzione
SCO2-I	Anidride Carbonica (CO ₂)	02000 o 5000ppm	0,5% f.s.
SCH4-I	Metano (CH ₄)	0100% Vol.	0,5% f.s.
SNH3-I	Ammoniaca (NH₃)	0100ppm	1ppm
SSO2-I	Anidride solforosa (SO ₂)	020ppm	0,2ppm
SH2S-I	Idrogeno solforato (H₂S)	0100ppm	0,1ppm
SNO-I	Ossido di azoto (NO)	0100 o 300ppm	0,5ppm
SNO2-I	Biossido di azoto (NO ₂)	010ppm	0,05ppm
SO2-I	Ossigeno (O ₂)	025%	0,5% f.s.
Uscita e	lettrica	420mA	
Alimentazione e consumi		1224Vdc 30mA (medio)	

Nota: per misurazioni con migliore risoluzione si consiglia l'uso di analizzatori specifici (disponibili su richiesta)

PALI				
Modello	PF2-55	PF3-55	PF4-55	PRBF10-110
Altezze (m)	2	3	4	10 max
Tipo	fisso	telescopico	telescopico	Ribaltabile
				bilanciato
Diametri (mm)	Base: 55	Base: 55	Base: 55	Base: 170
	Top: 55	Top: 50	Top: 45	Top: 70
Peso (kg) escluso stralli e accessori	6kg	11kg	15kg	170kg
N. stralli	nessuno	nessuno	3	nessuno
N. sfili/elementi	1	2	3	2
Realizzato in	Acciaio zinc.	Acciaio zinc.	Acciaio zinc.	Acciaio zinc.
Operatori richiesti x installazione	1	1	1	1+autogru

ESEMPI APPLICATIVI CON STAZIONI MicroMET3D

PF3-55 - Palo telescopico h=3m con piastra per fissaggio su platea in cls

PF4-55 - Palo telescopico h=4m (o 5m) con piastra per fissaggio su platea in cls

PRBF10-110 - Palo h=10m con fissaggio su plinto di fondazione

SOFTWARE

GEODESK è un software gratuito a corredo del datalogger che consente di importare i dati registrati su SD Card o inviati via GPRS o trasmessi via cavo e di generare un unico file dati in formato excel.

METEOGRAPH è un applicativo web per la visualizzazione numerica e grafica dei dati trasmessi via GPRS su area FTP da stazioni di monitoraggio ambientale con datalogger Geoves. Il software si appoggia su un'area FTP Geoves dove i dati vengono inviati autonomamente dalle centraline ad orari prefissati e sono disponibili in formato testo standard con campi separati da virgole (CSV format). I dati sono quindi sempre fruibili senza necessità di

utilizzare protocolli di comunicazione proprietari o programmi specifici per la decodifica dei dati; inoltre il software non richiede alcuna installazione in quanto è sufficiente un accesso ad internet ed inserire una username e password per entrare nella pagina web dedicata e visualizzare le misure da PC, tablet o smartphone. I dati in formato testo vengono elaborati da MeteoGraph per ottenere sulla pagina web sia la misura in formato numerico (es. valore medio minimo massimo tendenza, ecc...) sia in formato grafico scaricabile in formato bitmap jpg.

Cruscotto (dashboard) della stazione

Le funzioni disponibili sono:

- Situazione stazione: si accede alla pagina dell'elaborazione grafica e al sinottico della stazione
- Carica e importa dati: si importano i dati salvati sulla SD card del datalogger, o su una cartella del PC (o altro supporto)
- Download dati: si scaricano i dati in formato testo con campi separati da virgole per semplici backup o successive elaborazioni con altri applicativi (es. Excel, Access, Database esterni o altri software disponibili in commercio)
- Allarmi: si accede al menù di gestione degli allarmi di stazione (opzionale su richiesta)

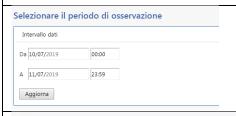
Situazione della stazione - Informazioni della stazione

I parametri visualizzati sono:

- Identificativo univoco stazione (ID)
- Nome della stazione
- Coordinate geografiche (Latitudine e Longitudine)
- Situazione data base dati:
 - Data e ora di Inizio memorizzazione dati
 - Data e ora Ultima memorizzazione dati
 - Stato di funzionamento della stazione
- Foto della stazione

Sinottico real-time della stazione

Il sinottico è uno strumento molto utile per valutare la situazione delle ultime misure rilevate dalla stazione di monitoraggio e valutare la situazione meteorologica o ambientale del sito. Per ogni misura è



possibile associare una o più elaborazioni dedicate. Ad esempio per la temperatura è possibile indicare il valore minimo e massimo e l'ora in cui si è verificato oltre ad altre misure calcolate quali il punto rugiada (dew point).

Nel sinottico vengono riportate inoltre:

- misure calcolate
- Dati diagnostici (es. tensione di batteria)
- Dati significativi per l'interpretazione della misura (es. tendenza barometrica, wind chill, precipitazione mensile, ecc...)

Periodo di osservazione

E' possibile selezionare il periodo di osservazione nel quale effettuare tutte le elaborazioni che vengono visualizzate da MeteoGraph

Elaborazioni grafiche


Lineare multi-linea per le misure dove viene applicata la media aritmetica (es. temperatura, umidità, pressione, ecc..) con rappresentazione del valore minimo e massimo

Elaborazioni grafiche

Rosa dei venti per le misure anemometriche

Elaborazioni grafiche per la precipitazione

- Grafico con la sommatoria oraria
- Istogramma mensile o annuale delle precipitazioni

Elaborazioni tabellari

Tabella giornaliera dei dati scaricabile sia in formato testo sia in formato immagine .png

Gestione allarmi

Per gestire gli allarmi, il software consente di impostare soglie di intervento verso l'alto (> valore) o verso il basso (<valore), dopo di che le e-mail di avviso vengono inviate al personale responsabile. Gli allarmi vengono quindi rappresentati sullo schermo con effetti e colori adeguati per attirare l'attenzione dell'operatore